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This paper utilizes Graph Theory to gain insight into the algebraic struc-
ture of a group using a Cayley digraph that depicts the group. Using the
properties of Cayley digraphs, we investigate how to tell if a given digraph
is a Cayley digraph, and we attempt to build Cayley digraphs. We then
use the Cayley digraph to �nd information about the structure of the cor-
responding group. Finally, we examine the results of removing generators
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1 Introduction

1.1 Graph Theory
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Example 1.1. If you look at the set Z of all integers, then you might notice that Z is a
group under addition, but not under multiplication since not every element of Z has an
inverse under multiplication. For example, 3 is an element of Z, but 3 does not have an
inverse in < Z; � >; there is no integer that you can multiply by 3 and get 1, the identity
in < Z; � >.

Example 1.2. A type of group that is used often in this paper is the group of integers
modulo n, Zn, where Zn = f0; 1; 2; 3; : : : ; n � 1g, and the operation used is modular
arithmetic, which can be described in the following way: for an integer z, and natural
numbers n and r, then (z mod n) = r if r is the remainder when z is divided by n. For
elements a, b in Zn, we de�ne a + b = ( a + b) mod n.

We describe theorder of a groupG as the number of elements inG.[3]

Example 1.3. The group of integers, Z, with addition, has in�nite order, while Z6, with
modular arithmetic, has order 6 (in general, Zn has order n).

We call a groupG abelian if its binary operation is commutative5.[3]

Example 1.4. Both the groups < Z; + > and < Zn; + > are abelian.

If H, a subset of a groupG, is closed under the binary operation ofG, and if H is a
group under the binary operation ofG, then H is a subgroup of G. A proper subgroup
of a groupG is any subgroup of order strictly less than the order ofG.[3] And the index
of a subgroupH of G is the order ofG divided by the order ofH.

Example 1.5. The group < 2Z; + >, with elements of only the even integers, is a sub-
group of < Z; + >. But < Z+; + >, with elements of only the positive integers, is not
a subgroup of < Z; + >. Even though Z+ is a subset of Z that is closed under the oper-
ation, < Z+; + > is not a group under the binary operation (since there are no inverses).

A group G is generated by a set of elementsS if S is a subset ofG and every element
of G can be written as a combination of the elements inS.

For a group G, let x 2 G. Then the setfxnjn 2 Zg= < x >, 6 a subgroup ofG, is the
cyclic subgroup of G generated byx. We say that the order of an element x is the order
of the cyclic subgroup generated byx.[3] We denote the order of an elementx by o(x).

And a group is cyclic if there exists an elementg in G such that G = < g > (i.e there
exists an element that generates all ofG). We call g a generator of G.[3]

5An operation * is commutative in a set S if for all elements g and g0 in S, g � g0 = g0 � g.[3]
6The symbol \2" means \an element of", and we be used often to denote an element’s membership in

a set.
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Example 1.6. The easiest example of a cyclic group is < Zn; + >. Consider < Z6; + >
and 1 2 Z6. The cyclic subgroup generated by 1 would be

< 1 > = f1; 12; 13; 14; 15; 16g (1)

= f1; 2; 3; 4; 5; 0g (2)

which is found by repeatedly adding 1 to itself. Since < 1 >= f1; 2; 3; 4; 5; 0g = Z6, then
we would say that 1 generates Z6, or that 1





0

1

2

3

4

5

Figure 6: Cayley digraph of< Z6; + >



3. Every vertex x in G has exactly one edge of each type starting at x and one of each
type ending at x.

4. If two di�erent sequences of edges starting at some vertex x go to the same vertex
y, then whenever those sequences begin at the same vertex in G, they should always
lead to the same vertex. [3]

Proof. The �rst property applies since for elementsg



have that the operation we have de�ned on the vertices ofG is well de�ned: given any
sequence of edges frome to x, that sequence can be used to represent multiplication on
the right by x.

And as a consequence of property 1 and the construction of



From this theorem, we know that if we can draw any graph that has these four prop-
erties, then the graph will be a Cayley digraph for a group. A question, however, is
how hard is it to actually draw a graph, without a preconceived notion of the group you
intend it to represent, that satis�es the four properties. In particular, we found the last
property is especially hard to predict.

In his text, A First Course in Abstract Algebra, Fraleigh claims that the four properties
that characterize every Cayley digraph have been used in discovering groups.[3] Thus,
we attempt to \discover" a group from a digraph that satis�es the four properties. Our
process is as follows: we choose an arbitrary number of vertices, choose one to two types
of edges that are intended to be generators, and then attempt to draw a digraph that
encompasses all four properties. Constructing a digraph the satis�es the �rst three is
easy enough, but it takes us several attempts to �nd a digraph that satis�es the last
condition. The following is one of the �rst attempts that proves to fail the fourth prop-
erty. The \generators" g1 and g2 are represented by solid arrows and dashed arrows,
respectively.
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Figure 7:



the fourth property is not satis�ed, and this digraph is not a Cayley digraph of a group.

Using the same process, we �nally managed to discover a digraph that turned out to be
the Cayley digraph for the Dihedral group on 10 elements,DiH5, which is the group of
symmetries of a regular pentagon. In the following digraph, let the solid edges represent
multiplication on the right by the generator g1 and the dashed edges represent multipli-
cation on the right by the generatorg2.12
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5. If the vertex at which you �nish after the sequence of edges fg2; g1g is the same
vertex at which you �nished when you followed the sequence of edges fg1; g2g, then
repeat this process for every pair of generators. If you �nish at the same vertex
each time, then G is abelian.

6. If you �nish at di�erent vertices for any of the pairs of generators, then G is not
abelian.

If we follow the above process, it is obvious that each pair of generators will commute.
But why does this mean thatG is abelian?

Proof. Suppose we have a Cayley digraphG of some groupG with generating set
fg1; g2; : : : ; gng.

If we �nd that there exist generatorsgi and gj such that gigj 6= gjgi by the above process,
then we know that G cannot be abelian, since every element ofG must commute.

However, if we �nd that each pair of generatorsfg
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Figure 9: Given a Cayley DigraphG.

Since we only have two generators, we call them g1 and g2. Now, let’s select vertex e. If
we begin at e and follow the sequence of edges fg1; g2g we will end at vertex d. Similarly,
if we start at vertex e and follow the sequence of edges fg2; g1g, we will end at vertex
d again. Thus, eg1g2 = g1g2 = d and eg2g1 = g2g1 = d so g1g2 = g2g1 = d. And, by
Proposition 3.1, G is abelian.

After close inspection, you may notice that G is actually a Cayley digraph of Z2 � Z5,
with generators (0; 1) and (1; 0) as g1 and g2 respectively.
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Figure 10: Cayley Digraph ofZ2 � Z5

Since we know that Z2 � Z5 is actually Z10, which we know to be abelian, we get the
result that we would expect from Proposition 3.1.

Example 3.3. On the other hand, suppose you are given the following digraph G 0 of
some group G0.
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the sequence of edges fg1



By Proposition 3.4, if we can �nd a closed walk in G� by repeating a sequence of one
single path that consists of every vertex and edge of G�, then G� is cyclic.

Consider the following path: fg1; g2g. We claim that if you repeat this sequence, then
you will have a closed walk of G� that is all of G�, and thus prove that G� is cyclic.

Let’s check: Start at e. If we follow this sequence once, we have traversed the following
red edges, and we included the following red vertices in our walk:
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Figure 16: Given Cayley digraphG� of group G� after we have traversed the edges in
the sequencefg1; g2g four times.
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Figure 17: Given Cayley digraphG� of group G� after we have traversed the edges in
the sequencefg1; g2g �ve times.
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Figure 18: Given Cayley digraphG� of group G� after we have traversed the edges in
the sequencefg1; g2g six times.

Thus, by repeating that sequence of edges fg1; g2g six times, we have included every ver-
tex and every edge of G� in our walk and returned to where we began, at vertex e. By
Proposition 3.4, we have that G� is cyclic. In fact, G� is isomorphic to the Cayley di-
graph of < Z6; + > with generating set f2; 3g, where generator g1 corresponds to 2 and
g2 corresponds to 3. And we know all groups < Zn; + > to be cyclic.

3.3 Cyclic Subgroups

Now that we know how to determine if a group is cyclic based its representation in a
Cayley digraph, we consider how to determine, from a Cayley digraph, the cyclic sub-
groups of the group being represented.

Proposition 3.6. Given a Cayley digraph G of some group G, you can �nd all of the
cyclic subgroups of G by the following method:

1. Choose a vertex of G. Say x.

2. Since each vertex of G can be represented by a sequence of edges of G, use this
representation for x.

3. Let S be the set of vertices reached by starting at the identity and repeatedly ap-
plying the sequence of edges that represent x until you arrive back at the identity.
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Figure 22: Given Cayley digraphĜ of some groupĜ, following the sequence of edges
fg2; g1g.

Now, S contains c, a, and f .
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Figure 23: Given Cayley digraphĜ of some groupĜ, following the sequence of edges
fg2; g1g.

Thus, we are back at e, and S = fc; a; f; eg. Therefore, by Proposition 3.6, the set S
represents the cyclic subgroup generated by c, i.e.,

< c > = fc; a; f; eg (17)

= fc = g2g1; a = ( g2g1)2; f = ( g2g1)3; e = ( g2g1)4g: (18)
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We also consider whether, given a Cayley digraph, if we can get information about
the normal subgroups of a group. We found a partial answer to this question after we
discovered the process presented in the next section, where we remove edge types from
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Figure 25: Resulting digraph when generator 2 is removed.

This is still a Cayley digraph of < Z6; + >, as you can see.

Examples similar to the one above lead us to the following theorem.

Theorem 4.2. Let G be a Cayley digraph of a group G. Suppose all edges of one type
are removed from G, and the resulting graph G 0 remains connected. Then G 0 remains a
Cayley digraph of G.

Proof. Let G represent a Cayley digraph of a group G. ThenG satis�es the four proper-
ties.

If we remove one type of edge fromG, and the resulting graphG 0 is connected, then we
know that G 0 satis�es the �rst condition.

SinceG 0 � G, then it is easy to see how properties 2, 3, and 4 hold inG 0. Since the only
change made between graphsG and G 0 is the removal of edges, andG satis�ed properties
2, 3, and 4, then the following is true:G 0 will not have more than one edge from some
vertex x to some vertexy, elseG would have failed property two. Every vertex inG 0
will still have exactly one edge of each type starting and ending at that vertex since
all edges of just one type have been removed. And, �nally, we know that there are no
sequences inG 0 that fail the fourth property else those sequences would have failed the
fourth property in G as well.

Thus, G 0 satis�es all four properties and must be a Cayley digraph ofG by Theorem 2.1.

Theorem 4.2 makes intuitive sense if we think about the interpretation of the Cayley
digraph in algebraic terms. If one generator is removed from the original generating set,
but that set still generates the entire group, then we still have a generating set for the
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Figure 26: There is some path inH betweene and h1.

Since this path exists inG, and G is a Cayley digraph, then, by the third property,
we know we can construct the same path fromx to xh1 in the connected component
containing x in G 0. We can do this in the following way: we know that the �rst edge
in the path from e to h1 will be adjacent to x because there existed exactly one edge of
each type starting atx in G.

Figure 27: We know that this �rst edge is adjacent tox because the third property of
Cayley digraphs is satis�ed inG.

Similarly, we know that the next edge in the path frome to h1 will be adjacent to the
vertex that is adjacent to x by the �rst edge for the same reason.
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Figure 28: We know that this second edge is incident to the �rst edge because of the
same reason.

In this way, we can construct the same path fromx to the vertex xh1 that existed
betweene and h1. We can call this vertexxh1 by the convention of our Cayley digraph
and right multiplication.

Figure 29: We can construct the path represented byh1, and we know havexh1 in the
connected component containingx.

Thus, for any elementh 2 H, we knowxh is in the connected component containingx.
Since the setfxhjh 2 Hg is the left cosetxH, we havexH is a subset of the connected
component containingx. We have proven the forward inclusion.

Now, consider an elementy of the connected component containingx. We know x and
y must be connected by a sequence of edges inG 0. Let's call this sequenceS.
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Figure 30: Sincex and y are in the same connected component, we know that they are
connected by some sequence of edgesS in G 0.

Using the same logic as before, we can construct that same sequence of edgesS in H,
starting at the identity. The vertex at which the sequenceS, starting from the identity,
ends is an element ofH, say h�.

Figure 31: This sequence of edgesS exists in H.

By property four of Cayley digraphs, we know that wherever this sequenceS exists, it
is equivalent to multiplication on the right by h�. Thus, in the connected component
containing x, we can interpret y as xh�, since if we follow the sequenceS (equivalent
to h�) starting at x, we get to y. Thus, every element of the connected component
containing x can be written asxh where h 2 H. Therefore the connected component
containing x is a subset of the left coset



In general, we have that each of the connected components ofG 0 represent a left coset
of H in G.

By this result, it follows that:

Corollary 4.4. The number of connected components in G 0 will be equal to the index of
H in G.

To illustrate the concept of Theorem 4.3, let's reconsider the Cayley digraph that repre-
sents the groupDiH5, with generating setfg1; g2g, where each solid edge is represented
by multiplication on the right by g1 and each dashed edge is represented by multiplication
on the right by g2:
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Figure 33: Resulting digraph wheng1 edges are removed.

Thus, by our theorem,H = fe; g2g is a subgroup ofDiH5 and the left cosets are:

g1H = fg1; g1g2 = ag; (19)

(g1)2H = fg2
1 = b; g2

1g2 = cg; (20)

(g1)3H = fg3
1 = d; g3

1g2 = hg; (21)

(g1)4H = fg4
1 = f; g4

1g2 = jg: (22)

4.3 Normal Subgroups

In our proof, we show how one can get theleft cosets of a certain subgroup using a given
Cayley digraph, but it is also possible to see theright cosets of the subgroup as well. In
order to produce the right cosets using this process, we need to change our convention
of multiplication on the right, to multiplication on the left.

Thus, if we rede�ne our operation and let each solid edge represent multiplication on
the left by generator g1 and each dashed edge represent multiplication on the left by
generator g2, then we can apply the same process above and be able to see the right
cosets ofDiH5. As you can see in the following �gure, the underlying digraph structure
is the same, but the labeling of the vertices changes slightly:
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Figure 38: Cayley digraph ofQ8.

If we remove the generator g1, then we get:
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Figure 39: Resulting digraph when generatorg1 is removed.

As you can see, we only have two connected components, even though the order of g1

is four, and there are two powers of g1 in each component. Thus, this fails our conjecture.

After we �nd Conjecture 4.6 to be wrong, we try to reason that there has to be at least
one power of the generator removed in each connected component ofG 0.
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Conjecture 4.8. Orphan Problem: Is it possible, when generator g is removed and the
graph becomes disconnected, for there to be an \orphan" connected component that has
no power of g in it?
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5. Then G = < g1; : : : ; gk; x >.

But, this conjecture turns out to be untrue.

Counterexample 4.11. Suppose we are given the group Z2 � Z5 � Z7 � Z11. We
choose H to be Z2 � Z5 � feg � feg. We can follow numbers one through four of
the Conjecture 4.10 and choose a generating set, say < (1; 0; 0; 0); (0; 1; 0; 0) >, con-
struct the corresponding digraph of H and 76 other connected components identical
to H, but the issue comes with the conclusion in step �ve. Say we had chosen x to
be (0; 0; 1; 0), which is in Z2 � Z5 � Z7 � Z11 but not Z2 � Z5 � feg � feg. Then
G 6= < (1; 0; 0; 0); (0; 1; 0; 0); (0; 0; 1; 0) >. For example, (1; 1; 1; 1) is in G, but not in
< (1; 0; 0; 0); (0; 1; 0; 0); (0; 0; 1; 0) >.

However, we believe only a slight alteration to this conjecture is needed. Although it is
left unproven, we believe the following to be true:

Conjecture 4.12. Given a group G, suppose we have a proper subgroup H of G. Then,
we can construct the Cayley digraph of a subgroup H+ of G for which H is also a proper
subgroup in the following way:

1. Choose a generating set of H. Say H = < g1; : : : ; gk >.

2. Construct a Cayley digraph of H.

3. Make H.





I also thank the Mathematics Department at Wittenberg University who provided me
with the knowledge and resources necessary for my research.

References

[1] G. L. Alexanderson:EULER AND KONIGSBERGS BRIDGES: A HISTORICAL
VIEW Bulletin of the American Mathematical Society (2006).

[2] L. Euler: Solutio Problematis ad Geometriam Situs Pertinentis (1736).

[3] J. B. Fraleigh:


